
Coventry University

Faculty of Engineering, Environment and Computing

School of Computing, Electronics and Mathematics

Designing and Implementing a Differential
Evolution Algorithm to Train Artificial Neural

Networks

Author: Ryan Barnes-Batterbee

SID: 5818260

Supervisor: Mauro Innocente

Submitted in partial fulfilment of the requirements for the Degree of

Master of Data Science and Computational Intelligence

Academic Year: 2018

Declaration of Originality

This project is all my own work and has not been copied in part or in whole from any other

source except where duly acknowledged. As such, all use of previously published work (from

books, journals, magazines, the Internet, etc) has been acknowledged within the main report

to an entry in the References list.

I agree that an electronic copy of this report may be stored and used for the purposes of pla-

giarism prevention and detection.

I understand that cheating and plagiarism constitute a breach of University Regulations and

will be dealt with accordingly.

Copyright Acknowledgement

The copyright of this project and report belongs to Coventry University.

Signed: Ryan Barnes-Batterbee Date: 20/8/2018

ii

Abstract

In this paper a new Differential Evolution (DE) algorithm is developed to train Artificial Neural

Networks (ANNs). ANNs are traditionally trained using gradient-based algorithms which whilst

efficient tend to converge towards local optima. DE algorithms are population-based algorithms

which mimic the natural evolution of biological systems. They investigate a search space

globally by iteratively trying to improve a candidate solution. The simulation of competing

individuals in a population is achieved using three search operations: crossover, mutation and

selection. Crossover is analogous to reproduction and is when multiple individuals are used to

create new individuals. Mutation is analogous to biological mutation and is when individuals in

the population are changed to maintain diversity. Selection is when the best individuals from

the current population which should be used in a new offspring population are selected. The

crossover and mutation strategies used by a DE algorithm can have a significant impact on its

performance.

The DE algorithm developed in this paper, SADEGL, uses self-adaptive crossover and mutation

strategies. The crossover and mutation strategies involve choosing between multiple crossover

and mutation operators based on how successful they have been in recent iterations. The

mutation operators are unique in that one is focused on exploiting the search space globally,

another on exploiting the search space locally, meaning it is also exploring the search space

globally, and a third operator focused purely on unbiased exploration of the search space.

The SADEGL is benchmarked using the CEC’2013 test suite. The performance of the algorithm

is impressive and comparable to the 10th best algorithm presented in the CEC’2013 competition.

The SADEGL algorithm is then used to train ANNs on the PROBEN1 datasets. The network

weights and biases obtained using SADEGL are fine tuned using BP. The performance on these

datasets is compared to that of the same network trained using BP. SADEGL-BP consistently

achieves better results than BP, at the expense of a much higher computational cost.

Additionally, a simple application is developed to allow users to train their own neural networks

with SADEGL-BP.

iii

Acknowledgements

I would like to thank my project supervisor Mauro Innocente who supported and advised me

throughout my time working on this project. From the very start of this projects conception

he was extremely enthusiastic about the topic, our scheduled meetings would often last much

longer than intended as he was always willing to spare some extra time to discuss my projects

progress. He encouraged me to focus on the aspects of the project I found most interesting,

and his knowledge of the optimization field proved to be truly valuable.

iv

Contents

1 Introduction 1

2 Background Research and Literature Review 3

2.1 Backpropagation . 3

2.1.1 Backpropagation Algorithm . 4

2.2 Evolutionary Algorithms . 4

2.2.1 Exploration and Exploitation . 5

2.2.2 Differential Evolution . 7

2.2.3 Adaptive and Self-adaptive Differential Evolution algorithm 10

2.3 Test Functions for Optimization . 12

2.4 Recent Literature - Training ANNs using EAs 15

3 Designing and Implementing a Differential Evolution Algorithm 19

3.1 Self-adaptive Mutation Strategy . 19

3.2 Chosen Mutation Operators . 21

3.3 Self-adaptive Crossover Rate Strategy . 21

3.4 Chosen Crossover Operators . 23

v

vi CONTENTS

3.5 Learning Period Size . 23

3.6 Scale factor . 24

3.7 Differential Evolution Pseudocode . 24

4 Benchmarking the Differential Evolution Algorithm 28

4.1 Chosen control parameters . 29

4.2 Results . 29

5 Training ANNs using SADEGL 36

5.1 PROBEN1 . 36

5.2 Training Multilayer Perceptions . 37

5.3 Hybridizing SADEGL with BP . 38

5.4 BP Control Parameters and Termination Criteria 38

5.5 SADEGL-BP Pseudocode . 38

5.6 Results: Comparisons with BP . 40

5.7 Results: SADEGL-BP . 40

6 Designing a User Interface for the SADEGL-BP algorithm 45

6.1 Design Requirements . 45

6.2 Design Implementation . 46

7 Project Management 50

7.1 Project Schedule . 50

7.2 Risk Management . 51

7.3 Quality Management . 52

7.4 Social, Legal, Ethical and Professional Considerations 52

8 Critical Appraisal 53

9 Student Reflections 55

10 Conclusion 56

10.1 Summary of Thesis Achievements . 56

10.2 Future Work . 58

Bibliography 59

Appendix 62

11 Appendix 63

vii

List of Tables

4.1 The control parameters chosen for the CEC’13 runs 29

4.2 Value of Function Errors for D = 10 . 32

4.3 Value of Function Errors for D = 30 . 33

4.4 Value of function errors for D = 50 . 34

4.5 Computational Complexity Values for D = 10, 30, 50 34

4.6 The Amount of Times Each Algorithm has the Smallest Value for Each Statistic 34

4.7 Interquartile Range for Each Dimension . 35

5.1 MSE values for SADEGLBP and BP . 41

5.2 Average CPU Run Time for SADEGEL-BP and BP 42

5.3 SADEGL and SADEGL-BP comparison . 44

viii

List of Figures

6.1 Design View of the User Interface for the SADEGL-BP algorithm 49

6.2 View of the Application in Use . 49

ix

Chapter 1

Introduction

Artificial Neural Networks (ANNs) are computing systems inspired by biological neural net-

works. They are used as surrogate and data-driven models, which are trained using known

data, so that they can accurately predict new data. During training the coefficients of ANNs

are formulated such that they minimise some defined error function. Data scientists often need

to model data where finding the exact solution is far too computationally complex or is un-

desirable. They require models which provide accurate results, have a fast training time for

known data and a fast testing time for new data. Therefore, they require well optimised models

to represent data. ANNs are frequently used to successfully model data, however traditional

training algorithms are gradient-based which whilst efficient, tend to converge towards local

optima. Hence, in recent years alternative training algorithms have been the focus of much

research.

Evolutionary Algorithms (EAs) are population-based optimisation algorithms which simulate

the natural evolution of biological systems. The simulation of competing individuals in a popu-

lation is achieved using three search operations: crossover, mutation and selection. Crossover is

analogous to reproduction and is when multiple individuals are used to create new individuals.

Mutation is analogous to biological mutation and is when individuals in the population are

changed to maintain diversity. Selection is when the best individuals from the current popu-

lation which should be used in a new offspring population are selected. The procedure of a

1

2 Chapter 1. Introduction

typical EA is to first generate an initial population, then evaluate the individuals of the popula-

tion and finally apply the search operators appropriately to create a new offspring population.

This process is repeated with the new population until some termination criterion is satisfied.

Since EAs are stochastic global search methods they can find near optimum solutions, but not

necessarily consistently.

The aim of this project was to design and implement an Evolutionary algorithm optimised to

train Artificial Neural Networks.

Initially I investigated how EAs are currently used to train ANNs. The purpose of this was to

compare and contrast the performance of various EAs when used to train ANNs.

Secondly, using the knowledge gained in the previous step I designed an EA optimized to train

ANNs. The EA was then implemented, and its performance was evaluated using the CEC’2013

functions [9]. The algorithms performance was comparable to that of the 10th best algorithm

presented in the CEC 2013 competition results comparison paper [10].

Thirdly, the EA was used to train single layer ANNs using the PROBEN1 datasets [16]. Sub-

sequently the network was trained using a gradient based method to fine tune the network

weights obtained using the EA. Additionally, the networks were trained using only a gradient

based algorithm and the results were compared to that of the designed EA-gradient hybrid

algorithm.

Fourthly, a user interface was designed and implemented for the EA. The interface allows users

to train ANNs using their own data and control parameters.

Finally, the performance of the EA is summarized and future adjustments which could improve

the algorithm are detailed.

Chapter 2

Background Research and Literature

Review

2.1 Backpropagation

Backpropagation (BP) is a gradient-based optimization method commonly used to train the

weights of ANNs. When training a network using BP, the weights of the network are usually

randomly initialized. Training data is then presented to the network and a a two-phase process

is repeated: Forward pass and Backward pass. When data is presented to the network, it

is propagated forward through the network, layer by layer, until it reaches the output layer.

The output of the network is then compared to the target output, using a loss function. The

resulting error value is calculated for each of the neurons in the output layer. The error values

are then propagated from the output back through the network, layer by layer, until each

neuron has a corresponding error value that reflects its contribution to the original output.

BP is a gradient based method, and therefore there is no guarantee that the global minimum

will be reached. This is because if the intial weights of the network are chosen inappropriately,

the BP algorithm can become stuck in a local minimum. Hence, despite how successful BP has

been in training ANNs in the past, currently research is focused on finding alternative training

algorithms which can produce well optmized networks without the need for such careful selection

3

4 Chapter 2. Background Research and Literature Review

of the intial weights [12].

2.1.1 Backpropagation Algorithm

Consider a neural network which corresponds to the function y = f(w, x), which given a weight

vector w, maps an input vector x to an output vector y.

1. Initialize the weights of the network

2. Training examples are presented to the network (x1, y1), (x2, y2),(xp, yp).

3. The difference between the target outputs and the predicted output is used to calculate

an overall error function.

4. The weights at the output layer are updated. Then the weights at each hidden layer are

updated in backwards order.

5. Steps 2-4 are repeated until stopping criteria is met.

2.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are population-based metaheuristic optimization algorithms.

EAs use mechanisms inspired by biological evolution, such as reproduction, mutation, and

natural selection. Candidate solutions to the optimization problem play the role of individuals

in a biological population. A fitness function determines the quality of these solutions and

is used by the optimization algorithm to mimic ”Survival of the Fittest”. Evolution of the

population takes place using reproduction, mutation, and selection operators. Unlike gradient

based methods, EAs are non-deterministic, meaning the final network weights can be different

on different runs, even when all the input variables are the same. Hence, whilst it is unlikely to

get stuck in local optima due to its initialization, it is still not guaranteed to find the optimal

solution. John Holland [6] popularized the first type of EAs Genetic Algorithms (GAs) in

2.2. Evolutionary Algorithms 5

the 1970’s. Whilst it remains one of the most commonly used EAs, there also exists popular

alternatives such as Differential Evolution. Swarm Intelligence (SI) algorithms such as Particle

Swarm Optimisation (PSO) are often used for the same purposes as EAs are, however they

mimic the collective behaviour of decentralized, self-organized biological systems, rather than

evolution.

2.2.1 Exploration and Exploitation

Currently the design of EAs is largely focused on designing algorithms which achieve a suitable

balance between exploration and exploitation. Consider exploration and exploitation as two

different operations of an EA. Exploitation consists of investigating a limited but promising

region of the search space with the hope of improving upon a promising solution S that an

algorithm has already found. This operation therefore involves searching in the neighbourhood

of S to improve upon it. However, exploration consists of investigating a much larger portion of

the search space with the hope of finding other promising solutions that are yet to be refined.

This operation therefore amounts to diversifying the search to avoid getting trapped in a local

optimum.

Crepinsek [3] defined exploration and exploitation using the euclidean distance between in-

dividuals. The authors definition decides if a new individual at iteration T is exploring or

exploitation based on how similar it is to another individual. They suggest various similarity

measurements to determine if a new individual indnew is exploring or exploiting, such as the

distance to its parents, and the smallest distance to another individual in the previous popu-

lation. However, the most appropriate similarity measurement for the closest neighbour SCN

suggested is calculating the distance between the new individual and the nearest individual in

the entire history of populations {P t|t = 1, 2..., T}. Therefore when SCN is greater,equal or

smaller than a threshold value X, a new individual can be categorized as either exploring and

or exploiting. Hence where

SCN(indnew, P
t) = min d(indnew, ind)

6 Chapter 2. Background Research and Literature Review

a new individual is considered to be exploring when

SCN(indnew, P
t) > X

and exploiting when

SCN(indnew, P
t) ≤ X.

This definition accurately describes an informal definition of exploitation and exploration, where

individuals within the neighbourhood of previously visited points are considered to be exploiting

, and all other individuals are exploring. However, this definition is not very useful in terms

of piratical applications. The time required to calculate whether an individual is exploring or

exploiting would increase exponentially with each iteration, and storing each point would require

a very large amount of memory. Additionally, defining exploitation as exploiting promising

regions of the search space rather than any region discovered is much more beneficial. Therefore,

a useful formal mathematical definition of exploration and exploitation, should be focused on

determining if an individual is exploiting an identified promising region of the search space or

not.

Clerc [2] defined exploitation using mathematical formula as searching around good positions

found in a search space. Consider a 1 dimensional search space [xmin, xmax] and the following

points (p0, p1,, pN , pN+1), where (p1, ..., pN) are the best positions found by an EA, p0 = xmin

and pN+1 = xmax. Choose ρ > 0 which controls how large the region around a positions pi

should be considered promising. Note that if p ≥ 0.5 the union of the regions is a single

connected domain. Therefore, we can consider N local exploitation areas

ei = [pi − ρ(pi − pi−1), pi + ρ(pi+1 − pi)], i ∈ {1, .., N}.

This definition can easily be extended to a D dimensional search space with best positions

represented by vectors pi = (pi,1, pi,2, ..., pi,D). Therefore, we have N local exploitation areas

defined by

Ei = ei,1 ×× ei,D, i ∈ {1, ..., N},

2.2. Evolutionary Algorithms 7

where on each dimension d we define intervals

ei,d = [pi,d − ρ(pi,d − pi−1,d), pi,d + ρ(pi+1,d − pi,d)], d ∈ {1, .., D}.

This definition of exploration and exploitation can easily be used practically to determine the

exploitation and exploration rate of an algorithm at iteration t. Let us define SE(t) as the

number of individuals inside a local exploitation area at iteration t. Therefore, using Clercs

definition of exploitation we define the exploitation rate as

r1(t) =
SE(t)

S
.

Hence, we can also define the exploration rate as

r2(t) = 1− r1(t).

Therefore, when aiming to adjust the balance of exploration and exploitation in an EA, these

rates can be used as metrics to determine if adjustments to an algorithm are having the intended

impact. For instance, if an EA is designed to focus on exploiting promising regions of the search

space at iterations T > t and exploration otherwise, then r1(T) should be significantly greater

than r1(t).

2.2.2 Differential Evolution

Differential Evolution (DE) is currently one of the most popular EAs used to train ANNs [4].

A basic variant of the DE algorithm begins with a population of candidate solutions. These

solutions are moved around in the search-space by using mathematical formulae to combine

the positions of existing solutions. If the new position of a solution is an improvement then

it is accepted and forms part of the population, otherwise the new position is discarded. The

process is repeated and by doing so it is hoped, but not guaranteed, that a satisfactory solution

will eventually be discovered. The mathematical formulae used to determine a solutions new

8 Chapter 2. Background Research and Literature Review

position is defined by the mutation and crossover strategies chosen.

The performance of DE primarily depends on the mutation strategy, the crossover strategy, and

the control parameters: scale factor F , crossover rate CR, and population size NP . There are

multiple distinct mutation strategies and crossover schemes proposed for use in DEAs. Each

of these mutation and crossover operations may be effective for certain problems but perform

poorly for others. Similarly, the performance of DE is dependant on the tuning of the control

parameters F , CR and NP . Many researchers have reported results of DEAs which demon-

strate the impact of parameter tuning [1], [8] . Therefore, researchers have naturally started

to develop techniques to automatically find the optimal value for these control parameters.

These techniques are known as adapative and self-adaptive strategies, and they often improve

algorthims, however the programming requrired for them is usually complex and can increase

the number of function evaluations required [5].

Mutation Strategies

DE creates a donor vector Vi corresponding to each population member Xi in the current

generation through mutation. The most common mutation strategies create donor vectors

using randomly chosen individuals from the current population XG = [X1, X2,, XNP] or

the best individuals from the current population. The standard naming convention used to

represent the various mutation strategies is DE/x/y, where x describes which individual is to

be perturbed, and y is the number of difference vectors considered for the perturbation of the

individual described by x. For example, some of the commonly used mutation strategies are

listed below [11]:

DE/rand/1:

Vi = Xr1 + F (Xr2 −Xr3).

DE/rand/2:

Vi = Xr1 + F (Xr2 −Xr3).+ F (Xr4 −Xr5).

2.2. Evolutionary Algorithms 9

DE/best/1:

Vi = Xbest + F (Xr1 −Xr2).

DE/best/2:

Vi = Xbest + F (Xr1 −Xr2) + F (Xr3 −Xr4).

DE/current-to-best/1:

Vi = Xi + F (Xbest −Xi) + F (Xr1 −Xr2).

The indices r1, r2, r3, r4 and r5 are all mutually exclusive integers from the range [1, NP], which

are randomly generated for each donor vector, and they are all different from the index i.

Crossover Schemes

Through crossover, the donor vector Vi mixes its components with the individual Xi to form

a trial vector Ui. The DE family of algorithms uses mainly two different crossover schemes:

binomial and exponential. Binomial crossover combines coordinates of Xi with coordinates of

Vi according to the following formula:

Uj =

Vj if Rj ≤ CR or j = I

Xj if Rj > CR and j 6= I

where I is a number randomly chosen from the set {1, 2, . . . , D}, D is the dimensionality of

the problem, R1, R2, ..., RD are random variables uniformly distributed in (0, 1) and CR ∈ [0, 1]

is the chosen crossover rate. In exponential crossover, an integer r is randomly chosen from

[1, D] which is the starting point for the exponential crossover. Coordinates of the trial vector

after r depend on a series of Bernoulli experiments with probability CR. The coordinates of the

donor vector will be transferred to the trial vector until the Bernoulli experiment is unsuccessful

for the first time or the crossover length has reached D − 1. The remaining coordinates are

transferred from the target vector Xi.

10 Chapter 2. Background Research and Literature Review

Selection

The selection phase involves the trial vector Ui and target vector Xi competing for a spot in

the next generations population. If f(Ui) < f(Xi) replace Xi with Ui in the next generation.

Otherwise, add Xi to the next generations population.

Differential Evolution Algorithm

1. Select a crossover rate CR ∈ [0, 1], the scale factor F and the population size NP .

2. Initialize a population of candidate solutions X = (x1, x2, ..., xD) with random positions

in the search-space.

3. Repeat the following until the termination criteria is met:

3.1. For each candidate solution Xi

3.1.1. Create donor vector Vi using chosen mutation operator.

3.1.2. Apply crossover operator to Xi and Vi to create trial vector Ui.

3.1.3. If f(Ui) < f(Xi) replace Xi with Ui in the next generation. Otherwise, add Xi

to the next generations population.

3.2. Replace current generation with the next generation.

4. Select the candidate solution from the population that has the best fitness value.

2.2.3 Adaptive and Self-adaptive Differential Evolution algorithm

Adaptive and Self-adaptive EAs are focused on adjusting the control parameters and learning

strategies used by an algorithm during a populations evolution. Many diferrent adaptive and

self-adaptive systems have been proposed for use in DEAs, since good adaptive control can

enhance the robustness of algorthims and reduce the time requrired to find the correct control

parameters. Additionally, its possible to improve an algorthims balance between exploration

2.2. Evolutionary Algorithms 11

and explotation, by changing its focus at diferrent stages of the evoltionary process. In adap-

tive systems, feedback from the evolutionary search is used to dynamically change the control

parameters and learning strategies. For instance, Rechenberg 1/5-th rule [12]. Whilst self-

adaptive systems adjust the parameters and learning strategies automatically during runtime.

For instance, Qin and Suganthan [17] proposed a Self-adaptive DE (SADE) algorithm that

attempts to automatically adapt the learning strategies used during evolution by comparing

how successful the learning strategies used are relative to each other. The SA system proposed

probabilistically selects one out of several candidate learning strategies for each. For instance,

we could define two mutation strategies as candidates rand/1 and and current − to − best/2.

The rand/1 strategy has proven a good strategy for maintaining diversity within a popula-

tion, and the current − to − best/2 strategy shows good convergence properties. We define

the probability of applying strategy rand/1 to each individual in the current population as p1,

and therefore the probability of applying current − to − best/2 is p2 = 1 − p1. Initially, these

probabilities are set to be equal such that p1 = p2 = 0.5. A vector of size NP is randomly

generated with uniform distribution in the range [0, 1] for each element. If the value of the

jth element of the vector is smaller than or equal to p1, then mutation strategy rand/1 will

be applied to the jth individual in the current population. Otherwise, the mutation strategy

best/2 will be applied to the jth individual in the current population. After creating all donor

vectors, the crossover operator is used to create a trial vector and selection occurs as usual. The

number of trial vectors which successfully enter the next generation due to the rand/1 strategy

and the current− to− best/2 strategy are recorded as ns1 and ns2, respectively. Similarly, the

numbers of trial vectors created by the mutation strategies rand/1 and current − to− best/2

which are not featured in the new population are recorded as nf1 and nf2, respectively. Those

four numbers are accumulated within a specified number of generations, called the learning

period. Then the probabilities p1 and p2 are automatically updated as:

p1 =

ns1
ns1+nf1

ns1
ns1+nf1

+ ns2
ns2+nf2

and

p2 = 1− p1.

12 Chapter 2. Background Research and Literature Review

The above expression represents the ratio for the success rate of the trial vectors generated

by the rand/1 strategy to the success rate of the trial vectors generated by the current −

to − best/2 strategy during the specified number of generations. The probability of applying

the two strategies is updated, after the learning period, and the four counters are reset to

zero. Therefore, the probability of a mutation strategy being selected becomes dependent on

the success rates of the trial vectors generated by the various strategies. Where the more

successful a mutation strategy is relative to other candidate strategies, the more likely it is to

be selected during the next learning period. Hence, if trial vectors created through exploration

(rand/1 generated) are much less successful than those created through exploitation (current−

to − best/2 generated) throughout the learning period, then its much less likely that a given

individual will explore in the next learning period.

2.3 Test Functions for Optimization

The task of any global optimization algorithm is to find the global optimum solution, this task

can be defined mathematically as:

Minimize
x

f(x)

where f(x) is the problem to be solved. Piotrowski [14] found that the best performance

of an MLP trained by various algorithms was obtained by a DE algorithm. However, this

DE variant did not show very good performance for on test functions. However, it should

be noted that the author only used 7 test functions: Ackley, Eggholder, Griewank, RANA,

Rosenbrock, Schweffel, and Whitley. Testing the optimization algorithms on a larger set of

test functions would potentially highlight which type of problems the algorithms performed

best on. Test functions have diverse properties and features. In some functions such as Easom

and Powell, the area that contains that global minima is very small, when compared to the

entire search space. In functions such as Perm and Schaffer, the global minimum is very close

to local minima [7]. Due to the diverse properties of different functions, to efficiently tackle

optimizations problems it is important to understand;

2.3. Test Functions for Optimization 13

• What aspects of the function search space makes the optimization process difficult?

• What algorithm is most effective for searching particular types of function search spaces.

Therefore, benchmark functions are classified in terms of features such as modality, basins,

valleys, separability and dimensionality. So that when algorithms are tested on these benchmark

functions, the type of problems where they performs better compared to other algorithms can be

identified. This allows researchers to characterize the type of problems for which an algorithm

is suitable. Hence, test functions are important to validate and compare the performance of

optimization algorithms. The use of many different test functions has been reported in relevant

literature; however, there is no standard set of benchmark functions. Ideally,a standard set of

benchmark functions would include functions which have diverse properties so that they can

fairly (without bias towards certain features/functions) test new algorithms. Some of the most

significant features of benchmark functions are discussed in the following section.

Basins and Valleys

Basins are large areas surrounded by a relatively steep decline. Optimization algorithms can

be easily attracted to such regions and become trapped in them since there is little information

to direct the search process towards the minimum. Similarly, a valley is a narrow area of little

change surrounded by regions of a steep descent. As with basins, optimization algorithms are

attracted to these regions. And the search process of an algorithm may be slowed down in

these narrow areas.

Dimensionality

The difficulty of a problem generally increases with its dimensionality. This is because as the

number of parameters increases, the search space increases exponentially.

14 Chapter 2. Background Research and Literature Review

Modality

The number of peaks in the function landscape corresponds to the modality of a function. If

algorithms encounters these peaks during a search process,they may become trapped in them.

This prevents the algorithm from finding the global optimal solutions. A unimodal function

has only one minimum. A multi-modal function has more than one local optimum. These

functions are used to test the ability of an algorithm to escape from any local minimum. If the

exploration process of an algorithm is poorly designed, or the algorithm is gradient-based, the

algorithm will become trapped in local minima easily and be unable to search the functions

search space effectively. Multi-modal functions with a large number of local minima are very

challenging problems for many algorithms. Flat surfaces in functions also create a challenge for

algorithms, because the flat surfaces do not give the algorithms any information to direct the

search process towards the minima.

Separability

A function of p variables is called separable, if it can written as a sum of p functions of just

one variable . On the other hand, a function is called non separable, if its variables show

inter-relation among themselves or are not independent. If the objective function variables are

independent of each other, then the objective functions can be decomposed into sub-objective

functions. Hence, each sub-objective function can be treated as a 1 dimensional problem, with

the other dimensions being treated as a constant. Therefore, the objective function can be

expressed as

f(x1, x2, ..., xp) =

p∑
i=1

fi(xi).

Separable functions are generally relatively easy to solve, compared to inseparable functions,because

each of the function variables is independent of the others. If all the variables are independent,

then a sequence of n independent optimization processes can be performed. Therefore, each

design variable can be optimized independently. Hence, the separability of a function can be

used as an indication of how difficult it is to solve.

2.4. Recent Literature - Training ANNs using EAs 15

2.4 Recent Literature - Training ANNs using EAs

This section contains a short but detailed review of literature published within the last 5 years

which discusses the performance of various EAs when used to train the weights of ANNs. The

purpose of this review is to understand the current state of research involving training ANNs

using EAs, in order to design a EA which rivals or performs better than current algorithms

(when used to train ANNs). Therefore, this review aims to identify promising evolutionary

systems for ANN training.

Sarangi et al. [18] hybridized Differential Evolution (DE) and Backpropagation (BP) algo-

rithms, referring to the result as the DE-BP algorithm. The authors discusses how the global

search abilities of EAs can improve the performance of ANNs, at the expense of a very high

computational cost for training the network. Therefore, they propose the DE-BP algorithm

in which DE is utilized to locate some smaller and better search spaces in the overall solution

space, then BP is utilized to locate the optimal solution in the chosen search spaces. There-

fore, the hybrid algorithm should have a faster convergence speed than a DE algorithm and

a smaller chance to get stuck in a poor local minima than a BP algorithm. The performance

of the DE-BP algorithm is investigated using seven different datasets. The experimental re-

sults are compared with the results of implementing BP, DE and a GA-BP algorithm. Each

of the training algorithms were executed ten times for each dataset, and the average accuracy

of the classifiers was calculated. For most of the datasets, the classification rate of the DE-BP

algorithm outperformed the other algorithms. The DE-BP algorithm achieved higher classifi-

cations rates whilst requiring significantly less training time than the DE and GA algorithms.

The results of this experiment suggest that the hybridized DE-BP algorithm is more suitable

to train ANNs than DE and GA-BP, however BP is still a viable alternative despite its poor

solutions due to the short amount of time it requires to run.

Wang et al. [20] used a similar hybridized DE-BP algorithm to Sarangi et al. to train an ANN,

however they used an improved DE algorithm. The authors choose DE to optimize the weights

of the ANN since it was performing better than alternative evolutionary training algorithms

such as GA in other research involving the training of ANN coefficients. DE algorithms are

16 Chapter 2. Background Research and Literature Review

amongst the most popular EAs due to them being easy to implement, the short time it takes for

them to converge, and their robustness. Wang implemented an Adaptive DE (ADE) algorithm

which uses an adaptive mutation factor where F is changed as the algorithm iterates. In DE

algorithms if F is too large the global optimal solution acquired by the DE may provide low

accuracy. However, if F is too small the diversity of the population is not guaranteed. The

proposed adaptive mutation scheme chooses F at each iteration using the following formula:

F = Fmin + (Fmax − Fmin)× e1−
GenM

GenM−G+1

where Fmin denotes the minimum value of the mutation factor, Fmax denotes the maximum

value, GenM is the maximum iteration number and G is the present iteration number. There-

fore, F is formulated such that it tends to Fmin as the iteration count tends towards it maximum.

Therefore, during the early iterations F is large and can guarantee the diversity of the popu-

lation. And during the later iterations, F is smaller and can therefore retain good individuals.

Note that whilst the authors refer to this as an adaptive strategy, it is actually deterministic as

the control parameter is altered without taking into account any feedback from the evolutionary

search. The authors investigated the performance of the ADE-BP algorithm using two datasets

which have non-linear features such as fluctuation and cyclic tendency. The structure of the

ANNs was designed using the conclusions of previous research, and the results are compared to

that of alternative optimisation algorithms. The ADE-BP algorithm significantly outperformed

other algorithms tested in terms of reducing the root-mean-square error and mean absolute er-

ror, including the DE-BP and GA-BP algorithms discussed by Sarangi et al. The results of

this experiment suggest that introducing adaptive parameters to the search operators of EAs

can further improve their ability to train ANNs.

Piotrowski [14] discussed why DE is a popular tool for training ANN coefficients, despite hav-

ing significant issues. Piotrowski suggests DEs popularity is due to its simplicity in terms of

understanding, encoding and implementation, and its good performance. However, despite its

popularity the standard DE algorithm has significant problems. For instance, the choice of

control parameters is a challenging task which can significantly affect the performance of the

2.4. Recent Literature - Training ANNs using EAs 17

algorithm. Additionally, the standard DE algorithm can often fail to achieve a suitable balance

between the exploration of a solution space and the exploitation of good solutions. Therefore,

its possible that a DE algorithm will either be too slow to converge or converge prematurely.

In this study the behaviour of eight DE variants is tested on benchmarks functions and applied

to train ANNs. The results of this experiment signify that that the proper balance between the

exploration and the exploitation capabilities of DE algorithms is crucial for them to success-

fully train ANNs. Algorithms with poorer exploitation capabilities showed very little or slow

improvements during the later iterations of a run. Algorithms with poorer exploration capabil-

ities found less optimal solutions. DE algorithm with Global and Local neighbourhood-based

(DEGL) mutation operators were the best performing algorithms in terms of MLP training.

DEGL algorithms are modified version of the DE/current-to-best/1 which favours exploitation

over exploration, since all the donor vectors created are attracted to the same best position in

the current population. The DEGL uses a different mutation strategy to effectively balance

exploration and exploitation during the search process. The mutation strategy uses a combi-

nation of two different mutation models. A local neighbourhood model, where each individual

is mutated using the best position found in a small neighbourhood of it and not in the en-

tire population. And the global mutation model, where each individual is mutated using the

best position found in the entire population. The global mutation model allows information

to spread quickly amongst individuals, whilst the local mutation model only allows individuals

to share information with their closest neighbourhood. By using a combination of these mu-

tation operators its exploration and exploitation capabilities are well balanced. The current

population P = [X1, X2,XNP] is organized on a ring topology, such that candidate solutions

XNP and X2 are the two immediate neighbours of vector X1. For every position Xi, we define

a neighbourhood of radius k, where 0 < k ≤ NP−1
2

and k ∈ Z, which consist of individuals

Xi−k, Xi−k+1, ...Xi+k−1, Xi+k. A local donor vector is defined as

Li = Xi + α(Xbesti −Xi) + β(Xp −Xq)

18 Chapter 2. Background Research and Literature Review

and a global donor vector is defined as

Gi = Xi + α(Xbest −Xi) + β(Xr1 −Xr2),

where Xbesti is the the best positions in the neighbourhood of Xi, p, q ∈ [i − k, i + k] with

p 6= q 6= i, and α, β are the scaling factors. These donor vectors are combined using a scalar

weight w ∈ (0, 1) to form the actual donor vector

Vi = w.Gi + (1− w)Li.

The results also showed that the performance of DE algorithms used to train MLP is signif-

icantly affected by the population size chosen. The tested self-adapting and distributed DE

algorithms required small population sizes. Whilst the DEGL variants performed better when

the population sizes were larger. Hence, the results of this experiment highlight the significance

of choosing a suitable population size for specific DEAs. Additionally, like the results of the

previously discussed studies, these results also highlight the significant benefit of balancing a

EAs local and global search capabilities.

The focus of research concerning the training of ANN coefficients is currently on designing

algorithms which are well balanced in terms of exploration and exploitation capabilities. It

is for this reason designing hybrid evolutionary and gradient-based optimisation algorithms is

currently a popular research direction. EAs are well suited to global optimisation tasks, however

gradient based algorithms are better suited to local search. Therefore, the combination of these

two types of algorithms has the potential to create an algorithm which is well balanced in

terms of its exploration and exploitation capabilities. Currently the most popular EA to train

ANNs is DE. Research is currently focused on improving this algorithm using hybridization

and adaptive parameters. Future research should focus on further improving the ability of the

DE algorithm to train ANNs by further optimizing the balance between its exploration and

exploitation capabilities, by introducing various adaptive and self-adaptive parameters, and

hybridizing it with suitable local search methods.

Chapter 3

Designing and Implementing a

Differential Evolution Algorithm

In this section the Self-adaptive Differential Evolution with Global and Local mutation (SADEGL)

is designed and implemented. As the name suggest its mutation operators are inspired by the

mutation strategy featured in [14]. However, instead of using the combination of the local and

global donor vector to form a single donor vector, the local and global donor vectors are the

result of two different mutation operators. The algorithm is designed to adapt according to

the relative success of each operator in previous iterations using a self-adaptive scheme similar

to that proposed in [17]. Additionally, a self-adaptive scheme is implemented to control the

crossover rate. [14] found that higher population sizes performed better for DEGL algorithms,

and it is common to scale the population size according to the dimensionality of the problem

being solved. Hence, initially NP = 10×D [15].

3.1 Self-adaptive Mutation Strategy

The DE algorithm features a mutation strategy which randomly selects one of three mutation

operators for each individual in the population. Initially each operator has equal probability

of being selected. Each time a trial vector created using a mutation strategy is successful its

19

20 Chapter 3. Designing and Implementing a Differential Evolution Algorithm

success is noted, as are its failures. After a learning period of LPM iterations, the success and

failures of each mutation strategy are summed and used to calculate the probability of the

strategy being selected during the next learning period. The success rate for each mutation

strategy Mi during a single learning period is calculated as

MSRi =
MSi

MSi +MFi

where MSi is the amount of times trial vectors created using the mutation operator Mi were

successful, and MFi is the amount of times they were not selected. The probability of a

mutation strategy being selected during the next learning period is

MPi =
MSRi

MSR1 +MSR2 +MSR3

.

Therefore, the success of a mutation operator relative to the success of the other two operators

determines the probability of it being selected in the next learning period.

If a mutation operator is mostly unsuccessful during a certain learning period, the probability

of it being selected will be low. However, this mutation operator may be useful again in later

iterations of the algorithm. But as MPi → 0, the success rate MSRi becomes less statistically

significant since the selection rate of the mutation operator should decrease and the sample size

will be much smaller. Hence, if an operators selection probability is too low, it may fail to be

recognized as a good operator for the current learning period. Additionally, if the probability

of a mutation operator falls to zero, its impossible for that operator to be used again. Hence,

this algorithm features a mechanism to prevent this issue. If any probability is less than the

user defined control parameter δ < 1
3
, each probability is reset to its initial probability.

As δ → 1/3 the adaptiveness of the mutation strategy decreases, since the strategy will more

leniently reset the probabilities of the mutation operators. As δ → 0 the adaptiveness of the

mutation strategy becomes less consistent, since there will be small sample size to calculate

the success rates of operators with low chance of selection. Therefore, δ should be a relatively

close to 0 compared to the initial probability of each mutation operator, hence in this scenario

3.2. Chosen Mutation Operators 21

δ = 1
3
× α, where 0 < α < 1. For the remainder of this paper α = 1

10
. Since this value for δ

performed well during brief testing of possible values. If no trial vector is successful during the

last learning period, the mutation strategy gains no information to direct the search further.

The success of each mutation operator depends heavily on the current population, therefore

the usefulness of each operator can change significantly during each learning period. Hence,

it is inappropriate to use the previous operator probabilities if no information is gained, and

therefore hence the probability of each operator being selected is set to equal.

3.2 Chosen Mutation Operators

The algorithm uses three different mutation operators current-to-best/1, current-to-local-best/1

and current-to-rand/1. Each of the choose mutation strategies have a distinct purpose. The

current-to-best/1 strategy exploits the region surrounding the best found solution in the current

population. The current-to-local-best/1 strategy explores the search space by exploiting the

best solution found within a neighbourhood of K individuals, where the individuals in the

population are ordered using ring topology. The purpose of the current-to-rand/1 strategy is

purely to diversify the population and avoid stagnation.

3.3 Self-adaptive Crossover Rate Strategy

The algorithm features a CR strategy similar to its mutation strategy. One of two crossover

operators is randomly selected for each individual solution. Initially each operator has a chosen

probability of being selected. Each time a trial vector created using a crossover operator is

successful it success is noted, as are its failures. Additionally, each time a trial vector U , created

using Ci, replaces an individual X,the improvement of that solutions fitness F (X) − F (U) is

calculated and added to a list of improvements , CIi. After a learning period of LPC iterations,

the success and failures of each crossover operator are summed and used to calculate the

probability of the operator being selected during the next learning period. The success rate for

22 Chapter 3. Designing and Implementing a Differential Evolution Algorithm

each crossover operator Ci for a single learning period is calculated as

CSRi =
CSi

CSi + CFi

, where CSi is the amount of times trial vectors created using the crossover operator Ci were

successful and CFi is the amount of times they were not selected. The success rates of each

operator are then multiplied by the mean improvement of the crossover operator, such that

Cweighti = CSRi ×mean(CIi).

The probability of a crossover operator being selected during the next learning period is

CPi =
Cweighti

Cweight1 + Cweight2
.

Therefore, the success of a crossover operator relative to the success of the other operator, de-

termines the probability of it being selected during the next learning period. Like the mutation

strategy, the crossover strategy features a mechanism to prevent operators from disappearing

from the selection process. Unlike the mutation strategy this mechanism doesn’t set the prob-

abilities of each operator equal if any probability falls below a pre defined value, instead each

operators probability is bounded in the range [CPmin, 1−CPmin]. This is because unlike the

successfulness of mutation operators, the successfulness of each crossover operator is expected

to change less significantly in a single learning period [21]. Therefore, the minimum tolerable

statistical significance of Cweighti should be relatively low, since the successfulness of an op-

erator is not expected to change suddenly. This is also why if no successful trial vectors were

created during the last learning period, the probabilities of each operator are not updated.

3.4. Chosen Crossover Operators 23

3.4 Chosen Crossover Operators

The algorithm uses two different crossover operators. When using either operator, Crossover

rates values are generated for each individual in the population using the following formula

CR = N (CRm, 0.1)

, hence crossover values are normally distributed with mean Cm and standard deviation 0.1.

However, each crossover strategy Ci uses a different value for CRm. For C1, CRm = 1 and for

C2, CRm = 0. Additionally, the crossover rate for each individual is bounded between 0 and 1.

The values are for CRm are at the extreme ends of the possible range, because small crossover

rate values will allow the algorithm to consistently make small improvements, and high crossover

rate values will allow the algorithm to make fewer but more significant improvements. Note

that this makes using just the success rate of crossover values a poor adaptation scheme, since

there is a natural bias to low crossover rate values, since they are more consistently successful,

but the improvements are usually insignificant. Hence, the mean improvement made by each

operator is used to scale the success rate of each operator appropriately, and it is these scaled

success rates used to determine the probabilities of each operator in the next learning period.

3.5 Learning Period Size

Both the mutation and crossover strategy adapt according to values generated in the previous

learning period. The longer the learning period, the larger the sample size used to generate

these values will be. Therefore, the information gained during the learning period will be more

statically significant. However, since the successfulness of strategies can change during the

learning period, the relevance and usefulness of information gained decays as the algorithm

continues to iterate. And therefore the larger the learning period, the less relevant and useful

information gained during the earlier iterations of the learning period will be. Hence, the

size of the learning periods must be appropriately chosen so that the adaptive strategies are

24 Chapter 3. Designing and Implementing a Differential Evolution Algorithm

determined based on a sample size large enough to provide reliable information, but small

enough to provide relevant information. After briefly testing various learning period in range

[1, 30], a learning period of 5 iterations was found most suitable for this algorithm. Hence, for

the rest of this paper LPC = LPM = 5

3.6 Scale factor

The scale factor f is randomly chosen for each individual. The random values chosen are

normally distributed with mean 0.5 and standard deviation 0.3. These values are bounded

between 0 and 2. The purpose of this randomization is to make the mutation process more

diverse. Making the scale factor self-adaptive would further increase the complexity of the

algorithm, and potentially make it worse by interfering with the mechanisms of the other self-

adaptive strategies.

3.7 Differential Evolution Pseudocode

Pseudocode for the SADGELP algorithm is represented by Algorithm 1. Pseudocode for the

mutation operators is represented by Algorithms 2,3 and 4. The algorithm was implemented

in Matlab, and the code is provided in the appendices.

3.7. Differential Evolution Pseudocode 25

Algorithm 1 Minimize function F

1: Input: D dimensional function F
2: Output: The best found candidate solution.
3: Initialize control parameters

Randomly generate and evaluate an initial population

4: for np=1 to NP do
5: X(np)← Randomly generate a D dimensional indivdual
6: Y (np)← F (X(np))
7: end for
8: gbest ← Z ∈ [1, NP] s.t Y (gbest) ≡ min(Y)

Intiliaze storage variables and mutation probablities

9: for each mutation operator Mi do
10: MSi,MFi,MSRi ← 0
11: MPi ← 1

3

12: end for
13: for each crossover operator CRj do
14: CIj ← []
15: CSj, CFj, Cweightj ← 0
16: end for
17: CP1, CRm1← 0.9, 1
18: CP2, CRm2← 0.1, 0
19: iter ← 0

Main Loop of Algorithm

20: while termination criteria is not met do
21: iter ← iter + 1
22: for np=1 to NP do
23: F ← N (0.5, 0.3) truncated within range [0, 2]
24: Randomly select a mutation operator Mi using the probablities MP1,MP2 and MP3

25: Randomly select a crossover operator Cj using the probabilities CP1 and CP2

26: Create donor vector V using Mi

27: Apply binomial crossover using Cj and store the result as trial vector U
28: if F (U) < F (X(np)) then
29: X(np)← U
30: Y (np)← F (U)
31: Add F (X(np))− F (U) to the list CIj
32: MSi ←MSi + 1
33: CSj ← CSj + 1
34: else
35: MFi ←MFi + 1
36: CFj ← CFj + 1
37: end if
38: end for

26 Chapter 3. Designing and Implementing a Differential Evolution Algorithm

39: gbest ← Z ∈ [1, NP] s.t Y (gbest) ≡ min(Y)

Determine new probabilities for crossover operators

40: if mod(iter,LPC)=0 then
41: for each crossover operator Cj do
42: if mutation operator has been selected atleast once then
43: if mutation operator has been successful atleast once then
44: Cweightj ← CSj

CSj+CFj
× X̄(CIj)

45: else
46: Cweightj ← 0
47: end if
48: CSj, CFj ← 0
49: end if
50: end for
51: if the sum(CSR) is not equal to 0 then
52: for each crossover operator Cj do

53: CPj ← Cweightj
sum(Cweight)

truncated within range [CRmin, 1− CRmin]
54: end for
55: end if
56: CI1, CI2 ← []
57: end if

Determine new probabilities for mutation operators

58: if mod(iter,LPM)=0 then
59: for each mutation operator Mi do
60: if mutation operator has been selected atleast once then
61: MSRi ← MSi

MSi+MFi

62: MSi,MFi ← 0
63: end if
64: end for
65: if the sum(MSR) is not equal to 0 then
66: for each mutation operator Mi do
67: MPi ← MSRi

sum(MSR)

68: end for
69: else
70: MP1,MP2,MP3 ← 1

3

71: end if
72: if either MP1,MP2 or MP3 < δ then
73: MP1,MP2,MP3 ← 1

3

74: end if
75: end if
76: end while

Return the best found canditate solution

77: return X(gbest)

3.7. Differential Evolution Pseudocode 27

Algorithm 2 M1 - Create current-to-local-best/1 donor vector

1: Input: X,NP, F, np,K, Y
2: Output: Donor vector V
3: neighbourhoodList← []
4: for k=0 to 2K do
5: neighbourhoodList(k)← mod(np−K − 1 + k,NP) + 1
6: end for
7: lbest ← Z ∈ neighbourhoodList s.t Y (lbest) ≡ min(Y) in the neighbourhood of np
8: j, k ← Unique randomly selected integers ∈ neighbourhood List where j, k 6= np
9: V ← X(np) + F [X(lbest)−X(np) +X(j)−X(k)]
10: return V

Algorithm 3 M2 - Create current-to-best/1 donor vector

1: Input: X,NP, F, np, gbest
2: Output: Donor vector V
3: j, k ← Unique randomly selected integers in range [1, NP] where j, k 6= np
4: V ← X(np) + F [X(gbest)−X(np) +X(j)−X(k)]
5: return V

Algorithm 4 M3 - Create current-to-rand/1 donor vector

1: Input: X,NP, F, np
2: Output: Donor vector V
3: j, k, q ← Unique randomly selected integers in range [1, NP] where j, k, q 6= np
4: V ← X(np) + F [X(q)−X(np) +X(j)−X(k)]
5: return V

Chapter 4

Benchmarking the Differential

Evolution Algorithm

In this section the DE algorithm designed in the previous chapter is benchmarked using the

CEC 2013 Competition Rules. The CEC’13 test suite includes 28 benchmark functions with

diverse properties. The main features of each function are briefly described in [9]. For each

function the search range is limited to [−100, 100]D where D is the dimensionality of the prob-

lem. Hence, the DE algorithm uniformly randomly generates an initial population within this

range and truncates all trial vectors within the range. The algorithm stops when either the

maximum number of functions evaluations has been reached or the error value of an individual

is less than 10−8, where the error value is the difference between the evaluation of the best

found candidate solution and the global optimum. The maximum number of function evalua-

tions is maxFE = 104 ×D. The algorithm is run 51 times for each function and for each run

the smallest error value found after (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)×maxFE is

recorded. The best, worst, mean, median and standard deviation values of the error values of

the 51 runs for each function are calculated and presented in this section. The algorithm is

benchmarked for three different dimensions D = 10, 30, 50.

Additionally, using the CEC’13 guidelines the algorithm complexity is calculated for each di-

mension to demonstrate the relationship between the algorithms computational complexity and

28

4.1. Chosen control parameters 29

dimensionality. The computational complexity is evaluated using the [9] measurement. The

algorithm was implemented in Matlab R2017a and run on a desktop computer with an Intel

Core i5-4590 @ 3.30GHz and 8.00 GBs of RAM, using Windows 10 operating system.

4.1 Chosen control parameters

Participants of the CEC’13 competition are requested not to search for the best distinct set of

parameters for each function/dimension. Hence, the control parameters are chosen to be the

same for all dimensions and functions. The control parameters chosen are shown in Table 4.1.

Table 4.1: The control parameters chosen for the CEC’13 runs

Control Parameter Value
NP 10D
K NP

10

δ 1
30

CPmin 1
20

LPC 5
LPM 5

4.2 Results

The values of the function errors are shown in Table 4.2 for D = 10, Table 4.3 for D =

30, and Table 4.4 for D = 50. The computational complexity values obtained are shown in

Table 4.5. The tables are presented in the format requested in the CEC’2013 competition

guidelines. Hence, errors smaller than 10−8 are set to zero. The results in these tables provide

little information about the performance of the algorithm by themselves. To understand the

performance of the algorithm, we must understand how difficulty each function is to optimize.

Therefore, the performance of the algorithm is analysed by comparing the results to the results

of other algorithms on these problems.

30 Chapter 4. Benchmarking the Differential Evolution Algorithm

The algorithms presented in the CEC’2013 results comparison paper [10] were ranked by com-

paring the best solutions for each function of each algorithm. The paper features 21 high per-

formance algorithms, hence to determine how well the proposed SADEGL algorithm performs,

comparisons are initially made to the results of the middle ranking algorithm (10th ranked)

’b6e6rl’ [19]. Note that the intended use of SADEGL is to train ANNs, and the results found

by the algorithm will be fine tuned using BP, hence finding the most optimal solutions is not

necessary at this stage, the algorithm should however consistently find near optimal solutions.

For each dimension the best, worst, median, mean and standard deviations for SADEGEL and

b6e6rl are compared and ranked relatively. The algorithm with the minimum value for each

statistic is noted. The standard deviation alone provides no useful information to compare

the algorithms, an algorithm could have a small standard deviation for a function but a much

worse mean than the other algorithm, hence the algorithm could just be consistently performing

poorly on that function. Hence, the standard deviations values are not compared and discussed.

The comparisons for each function and dimension are summarized in Table 4.6.

For the 10 dimensional functions the best values were most commonly found by both functions,

however 7 were found by SADEGL and 11 by b6e6rl. The amount of worst values found was

similar for both algorithms, with b6e6rl providing 13 of the worst values and SADEGL providing

12. The amount of times each algorithm had the smallest median and mean is similar.

For the 30 dimensional functions the best values were most commonly found by SADEGL, with

it finding 14 of the best values and b6e6rl finding 9. The worst values were most commonly

found by b6e6rl with it finding 17 of the worst values and b6e6rl finding 8. The amount of

times each algorithm had the smallest median and mean is very similar.

For the 50 dimensional functions the best values were most commonly found by b6e6rl, with

it finding 14 of the best values and SADEGL finding 10. The amount of times each algorithm

had the worst value for a function was equal. And the amount of times each algorithm had the

smallest median and mean is very similar.

From the results of the best value comparisons we can infer that SADEGL is atleast competi-

4.2. Results 31

tive with b6e6rl finding better or equal best values approximately 60% of the time for the 10D

problems, 67% for the 30D problems, and 50% for the 50D problems. From the results of the

worst, mean, and median value comparisons we can also infer that SADEGL is able to consis-

tently find good results. Since regardless of dimension the amount of times either algorithm

has the worst value, or smallest median/mean across the 51 runs is close to equal. However, in

the 30 dimensional case b6e6rl finds worse values than SADEGL 68% of the time. Suggesting

either that the control parameters used for SADEGL are most appropriate when D = 30, or

control parameters for b6e6rl are not appropriate for when D = 30.

The consistency of stochastic optimization algorithms can be analysed effectively using the

Interquartile Range (IQR) ?? , hence the IQR is calculated for each each function and for each

dimension. The IQRs are shown in Table 4.7. Apart from a few exceptions, the interquartile

range of the runs increases as the dimensionality increases. The majority of functions have rel-

atively small interquartile range for all dimensions, the two noticeable exceptions are functions

2 and 3. These functions are mostly flat which makes its difficult for a function to navigate the

surface space. The relatively small interquartile ranges for the majority of functions suggest

that the algorithm can consistently find good solutions to problems. This demonstrates that

SADEGL algorithm has suitable balance between exploration and exploration.

From the computational complexity values we can clearly see that the increase in complexity is

linear with the increase in dimensionality. However, by testing the algorithm with NP = 150 its

clear that majority of the computation complexity is a result of NP = 10D increasing linearly

as the dimensionality increases. Therefore, if in future tests it is shown that large NP values do

not produce significantly better results than smaller NP values, smaller values of NP should

be used to reduce the computational complexity of the algorithm. The reason for this increase

in computation complexity is likely to be the use of the local operator, since as NP → inf,

K → inf, meaning the algorithm must search a wider range of values for the local minimum.

Additionally note that the algorithm is computationally less expensive than b6e6rl for each

dimension when NP = 150, however when NP = 10D it is only less expensive when D = 10,

it is slightly more expensive when D = 30 and significantly more expensive when D = 50.

32 Chapter 4. Benchmarking the Differential Evolution Algorithm

Table 4.2: Value of Function Errors for D = 10

Problem
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Best Worst Median Mean Std
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 6.32E+00 0.00E+00 2.51E-01 1.24E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 9.81E+00 9.81E+00 5.58E+00 4.91E+00
2.97E-06 1.11E+00 1.25E-03 6.52E-02 2.08E-01
2.02E+01 2.05E+01 2.04E+01 2.04E+01 6.93E-02
0.00E+00 5.43E+00 2.22E+00 2.38E+00 1.55E+00
0.00E+00 4.43E-02 9.86E-03 1.23E-02 1.17E-02
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
9.95E-01 1.39E+01 4.93E+00 5.14E+00 1.95E+00
0.00E+00 1.56E+01 5.30E+00 5.76E+00 3.21E+00
1.19E-02 8.02E-01 3.45E-01 3.56E-01 1.27E-01
2.61E+02 9.72E+02 5.81E+02 5.88E+02 1.53E+02
4.27E-01 1.30E+00 8.59E-01 8.44E-01 1.77E-01
1.01E+01 1.02E+01 1.02E+01 1.02E+01 1.72E-02
1.68E+01 2.98E+01 2.23E+01 2.25E+01 2.62E+00
1.97E-01 3.94E-01 3.39E-01 3.27E-01 4.61E-02
1.92E+00 3.53E+00 2.48E+00 2.57E+00 4.11E-01
4.00E+02 4.00E+02 4.00E+02 4.00E+02 0.00E+00
6.59E+00 3.74E+01 1.93E+01 2.03E+01 7.54E+00
3.10E+02 1.17E+03 7.49E+02 7.42E+02 1.91E+02
1.12E+02 2.14E+02 2.07E+02 2.04E+02 1.39E+01
1.61E+02 2.15E+02 2.00E+02 2.02E+02 7.64E+00
1.02E+02 2.00E+02 1.26E+02 1.53E+02 4.71E+01
3.00E+02 5.91E+02 3.00E+02 3.82E+02 1.01E+02
3.00E+02 5.42E+02 3.00E+02 3.07E+02 3.65E+01

4.2. Results 33

Table 4.3: Value of Function Errors for D = 30

Problem
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Best Worst Median Mean Std
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
1.57E+03 6.41E+04 1.51E+04 1.80E+04 1.46E+04
1.76E-02 4.98E+06 1.09E+04 3.52E+05 9.55E+05
1.31E-05 9.84E-03 4.77E-04 1.11E-03 1.76E-03
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00 2.64E+01 1.12E+00 6.05E+00 1.02E+01
6.86E-01 5.91E+01 1.19E+01 1.46E+01 1.14E+01
2.08E+01 2.10E+01 2.10E+01 2.10E+01 4.55E-02
2.47E+01 3.17E+01 2.89E+01 2.88E+01 1.48E+00
0.00E+00 1.11E-01 3.20E-02 3.46E-02 2.37E-02
2.75E+00 6.48E+00 4.49E+00 4.48E+00 7.89E-01
4.49E+01 1.02E+02 6.37E+01 6.54E+01 1.18E+01
5.89E+01 1.25E+02 9.94E+01 9.67E+01 1.62E+01
3.70E+02 7.03E+02 5.85E+02 5.85E+02 6.98E+01
3.83E+03 5.48E+03 4.84E+03 4.81E+03 3.33E+02
1.48E+00 2.38E+00 1.92E+00 1.90E+00 2.30E-01
3.64E+01 4.03E+01 3.82E+01 3.82E+01 7.38E-01
1.13E+02 1.69E+02 1.43E+02 1.42E+02 1.21E+01
2.03E+00 3.44E+00 2.63E+00 2.64E+00 3.13E-01
1.11E+01 1.25E+01 1.17E+01 1.17E+01 3.59E-01
2.00E+02 4.44E+02 3.00E+02 3.41E+02 9.33E+01
4.13E+02 9.26E+02 6.07E+02 6.17E+02 1.14E+02
4.44E+03 5.75E+03 5.29E+03 5.19E+03 3.21E+02
2.12E+02 2.76E+02 2.36E+02 2.35E+02 1.70E+01
2.33E+02 2.90E+02 2.58E+02 2.60E+02 1.17E+01
2.00E+02 3.75E+02 2.00E+02 2.16E+02 4.54E+01
3.58E+02 1.10E+03 9.14E+02 7.79E+02 2.53E+02
3.00E+02 3.00E+02 3.00E+02 3.00E+02 2.47E-13

34 Chapter 4. Benchmarking the Differential Evolution Algorithm

Table 4.4: Value of function errors for D = 50

Problem
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Best Worst Median Mean Std
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4.42E+04 2.37E+05 8.94E+04 1.06E+05 4.88E+04
1.45E+03 3.73E+07 1.51E+06 4.93E+06 7.85E+06
4.84E-03 1.32E-01 2.72E-02 4.00E-02 3.12E-02
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
1.49E+01 4.91E+01 4.34E+01 4.25E+01 6.84E+00
6.51E+00 7.12E+01 2.88E+01 3.14E+01 1.46E+01
2.10E+01 2.12E+01 2.11E+01 2.11E+01 3.72E-02
5.39E+01 6.03E+01 5.73E+01 5.75E+01 1.59E+00
0.00E+00 1.08E-01 2.96E-02 3.10E-02 2.25E-02
3.31E+01 4.56E+01 3.69E+01 3.75E+01 2.94E+00
1.53E+02 2.25E+02 1.84E+02 1.86E+02 1.79E+01
1.84E+02 3.03E+02 2.52E+02 2.52E+02 2.75E+01
1.65E+03 2.30E+03 1.99E+03 1.99E+03 1.34E+02
9.72E+03 1.13E+04 1.05E+04 1.05E+04 3.48E+02
2.00E+00 3.06E+00 2.60E+00 2.58E+00 2.29E-01
8.38E+01 9.67E+01 9.18E+01 9.16E+01 2.80E+00
2.74E+02 3.60E+02 3.10E+02 3.11E+02 1.72E+01
5.65E+00 1.03E+01 7.70E+00 7.75E+00 9.83E-01
1.99E+01 2.19E+01 2.11E+01 2.11E+01 4.91E-01
2.00E+02 1.12E+03 8.36E+02 8.47E+02 3.30E+02
1.66E+03 2.93E+03 2.19E+03 2.21E+03 2.59E+02
9.63E+03 1.18E+04 1.11E+04 1.10E+04 5.85E+02
2.46E+02 3.60E+02 2.77E+02 2.86E+02 2.89E+01
2.97E+02 3.77E+02 3.25E+02 3.30E+02 1.97E+01
2.00E+02 4.49E+02 4.32E+02 3.67E+02 1.03E+02
7.24E+02 1.90E+03 1.66E+03 1.45E+03 3.88E+02
4.00E+02 3.46E+03 4.00E+02 4.60E+02 4.28E+02

Table 4.5: Computational Complexity Values for D = 10, 30, 50
Dimension SADEGL: NP=10D SADEGL: NP=150 b6e6rl

10 55 55 71.69
30 79 68 74.32
50 103 81 83.15

Table 4.6: The Amount of Times Each Algorithm has the Smallest Value for Each Statistic

10D 30D 50D
Algorthim Best Worst Median Mean Std Best Worst Median Mean Std Best Worst Median Mean Std
SADEGL 7 12 10 13 16 14 8 12 11 9 10 13 11 13 14

b6e6rl 11 13 12 12 9 9 17 12 14 17 14 13 14 13 12
Neither 10 3 6 3 3 5 3 4 3 2 4 2 3 2 2

4.2. Results 35

Table 4.7: Interquartile Range for Each Dimension

Function Interquartile range D10 Interquartile range D30 Interquartile range D50
1 0 0 0
2 0 16921.9007 81170.90799
3 8.11868E-06 143947.4791 5599550.437
4 0 0.001075387 0.038227375
5 0 0 0
6 9.812422739 3.986623879 1.13687E-13
7 0.008621581 16.14992314 20.57514953
8 0.08484927 0.048921656 0.047887856
9 2.702298948 2.037383 2.369488669
10 0.01734752 0.02644738 0.027080525
11 0 0.875832101 3.973660245
12 1.789251854 15.90927073 24.98065322
13 4.34960701 23.63636022 39.91411286
14 0.133232013 108.8192656 165.9433995
15 191.1865983 482.4869741 558.3730348
16 0.262447835 0.293128814 0.249663544
17 0.023258432 0.93222181 3.693163058
18 2.4686356 14.4721881 20.23203058
19 0.05640083 0.466037865 0.998384382
20 0.523114715 0.59604981 0.755450047
21 0 143.5441417 285.743276
22 11.37878795 151.1289799 281.5400353
23 245.2006469 494.7870744 850.1116086
24 9.223922921 25.42793888 26.10996356
25 6.507018383 10.57566826 26.33630262
26 94.61846141 0.001317367 209.2966631
27 191.0625553 510.2145808 762.5400855
28 0 4.54747E-13 4.54747E-13

Chapter 5

Training ANNs using SADEGL

5.1 PROBEN1

In this chapter the SADEGL algorithm is hybridized with BP in order to train ANNs. The

performance of the SADEGL-BP hybrid is benchmarked using the PROBEN1 datasets [16].

PROBEN1 contains 15 data sets from 12 different domains, all but one dataset uses real world

data. The collection of datasets features both pattern classification and function approximation.

Each datasets is presented in the same simple format, using an attribute representation so that

it can be directly used for neural network training. Additional, there exists three different

variations of each dataset. Each variation of a dataset uses a different permutation of the data

for training, validation and testing data. Using the different permutations is beneficial since

the datasets have a relatively small number of examples, and therefore benchmark results are

less reliable, but using different splits increases the significance of the benchmarking results. In

addition to the small size of the datasets, many of the datasets have missing values which have

been replaced with fixed values, or handled alternatively during the preparation of the dataset.

The PROBEN1 rules are not followed in their entirety, as the purpose of this research is not

to compete with the algorithms of other researchers. But to compare the performance of

SADEGL-BP and BP when used to train ANNs. The PROBEN1 datasets were chosen to

36

5.2. Training Multilayer Perceptions 37

evaluate the performance of the algorithms, since these are real world datasets with problems

such as missing values, and insufficient amounts of data instances. And therefore they should

be appropriately challenging for the sake of comparison between the two algorithms of interest.

5.2 Training Multilayer Perceptions

Multilayer Perceptions (MLP) are the class of neural networks chosen to train the PROBEN1

datasets. The universal approximation theorem for neural networks states that every continuous

function that maps intervals of real numbers to some output interval of real numbers can be

approximated with error less than some chosen value δ by an MLP with just one hidden

layer [13]. Hence, the choice of neuron count in the hidden layer will determines how accurate

the model will be. In this paper the neuron count is arbitrarily chosen to be n = 5, since a

large quantity of datasets are being used, and the purpose of the results is to be observe the

performance difference between training a network with SADEGL-BP and BP.

When training an MLP using DE algorithms the individuals in the population each represent

a different combination of the weights and biases of the network. Therefore, the dimensionality

used for each problem is D = n × (inputCount + outputCount + 1) + outputCount, where

inputCount is the number of input features in the dataset, and outputCount is the number of

output features in the dataset.

Each dataset is divided into training, validation and testing data using the PROBEN1 spec-

ified splits. The algorithm uses the training data to train the network, the validation data

to determine when to stop training the network and testing data to evaluate the perfor-

mance of the network. The stopping criteria chosen for training the network using SADEGL-

BP, involves stopping the algorithms evolutionary process when the algorithm is either im-

proving too slowly or over fitting to the training data. Hence, the max amount of genera-

tions the algorithm can continue without significant reduction in the error of the validation

set , maxGenerationStagnation, is introduced as a new control parameter. An additional

control parameter stopTol must also be defined as the minimum improvement required in

38 Chapter 5. Training ANNs using SADEGL

maxGenerationStagnation iterations of the algorithm.

5.3 Hybridizing SADEGL with BP

Once the SADEGL algorithm has trained the weights/biases of the network, they are further

fine-tuned using BP. If the result of training the networking using BP, reduces the error of the

testing data further, the networks weights/biases are selected. If the result of the BP training

doesn’t reduce the error, the weights/biases found using SADEGL are instead selected.

5.4 BP Control Parameters and Termination Criteria

BP is performed using Matlabs ANN toolbox. The criteria for BP training being terminated

is as follows;

• The number of epochs has reached 1000

• The MSE is 0

• Validation has failed 6 times

• The gradient is less then 1e− 5

The learning rate used is 0.1.

5.5 SADEGL-BP Pseudocode

Pseudocode representing SADEGL-BP is shown by Algorthim . The algorithm was imple-

mented in Matlab, and the code is provided in the appendices.

5.5. SADEGL-BP Pseudocode 39

Algorithm 5 Training MLP using SADEGL-BP

1: Initialize control parameters for SADEGL
2: Initialize stop tolerance stopTol
3: Initialize max amount of stagnating generations maxGenerationStagnation
4: Initialize error function F1 for training data
5: Initialize error function F2 for validation data
6: Initialize error function F3 for testing data
7: Generate an initial population uniformly distributed ∈ [−1, 1]D

8: Select the best individual in the population gbest and store it as bestWB
9: Evaluate F2(gbest), then store the result as bestV al
10: while termination criteria is not met do
11: Evaluate each individual in the current population using F1 as the fitness function
12: Select the best individual in the population gbest and evaluate F2(gbest)
13: if F2(gbest) < bestV al then
14: if (F2(gbest)− bestV al) > stopTol then
15: GenerationStagnation← 0
16: bestV al← F2(gbest)
17: else
18: GenerationStagnation← GenerationStagnation+ 1
19: end if
20: bestWB ← gbest
21: else
22: GenerationStagnation← GenerationStagnation+ 1
23: end if
24: if GenerationStagnation == maxGenerationStagnation then
25: Stop the evolutionary loop
26: else
27: Adapt the mutation and crossover rate strategies
28: end if
29: end while
30: Initialize an MLP with n neurons
31: Set the weights and biases to bestWB
32: Train the network using BP
33: Test the network using the testing data, save the error as bpError
34: if bpError ≤ F3(bestWB) then
35: return The weights and biases of the network trained using SADEGL and then BP
36: else
37: return The weights and biases of the network trained using SADEGL
38: end if

40 Chapter 5. Training ANNs using SADEGL

5.6 Results: Comparisons with BP

Statistics for the MSE values over 10 runs for each dataset are shown in Table 5.1 for both

BP and SADEGL − BP . THe average run time for both algorithms is shown in Table 5.2.

SADEGL-BP finds the best solution for every single dataset, and BP finds the worst solu-

tions for every single dataset.The median MSE for each dataset is always smaller when using

SADEGL-BP than BP. Additionally, note that the IQR for SADEGLBP is smaller than the

IQR for BP, for every single dataset.The worst value for SADEGL-BP is better than the best

value found by BP in 39/45 datasets. The datasets where this not true are the three variations

of the thyroid dataset, diabetes1, cancer3 and flare3. Each of these datasets has a common fea-

ture; the amount of examples for one of the outputs is substantially more than the amount for

other outputs. This could suggest the SADEGL-BP is less consistent when there is significant

class imbalance. Note that there is no noticeable relationship between the dimensionality of a

problem by SADEGL-BP. Suggesting that the algorithm exploration capabilities are enabling

it to effectively search high dimensional search spaces. However, in general both the average

CPU time required to run SADEGL-BP and BP increases as the dimensionality of the problem

increases. Naturally, the average CPU run time for SADEGL-BP is far greater than average

run time for BP .

5.7 Results: SADEGL-BP

Table 5.3 shows the significance of the BP hybridization in SADEGL-BP. The average, average

improvement of the datasets is 0.085289596 with standard deviation 0.076509426, suggesting

the improvement made varies relatively significantly with each dataset. The average, best

improvement of the datasets is 0.109263422 with standard deviation 0.092729408 which sug-

gest the best improvement varies very relatively significantly between datasets. The average,

worst improvement of the datasets is 0.001479909 with standard deviation 0.005260822 sug-

gesting that regardless of dataset, some runs of the SADEGL-BP will not benefit from the BP

hybridization. However, the hybridization is cheap to implement in terms of computational

5.7. Results: SADEGL-BP 41

Table 5.1: MSE values for SADEGLBP and BP

Dataset best SADEGL-BP best BP Worst SADEGL-BP Worst BP Median SADEGL-BP Median BP IQR SADEGL-BP IQR BP
building1.dt 0.013039 0.046722 0.023688 0.12478 0.021025 0.0670895 0.006963 0.031413
building2.dt 0.011885 0.034687 0.019181 0.097531 0.016589 0.0526535 0.003771 0.049797
building3.dt 0.013318 0.037368 0.019396 0.12272 0.016235 0.0562505 0.00412 0.028197
cancer1.dt 0.037295 0.21967 0.090763 0.76966 0.051431 0.60223 0.026136 0.33733
cancer2.dt 0.043452 0.36842 0.063127 1.0319 0.0492725 0.63902 0.006847 0.21785
cancer3.dt 0.042835 0.04548 0.065999 0.76206 0.053832 0.25623 0.016717 0.20915
card1.dt 0.13799 0.34336 0.22075 0.54951 0.15961 0.45349 0.05365 0.10186
card2.dt 0.13218 0.30633 0.1907 0.72263 0.15798 0.507585 0.0266 0.24026
card3.dt 0.125 0.29169 0.25695 0.6903 0.2112 0.431915 0.05966 0.23316

diabetes1.dt 0.18893 0.21992 0.22411 0.46176 0.19499 0.314685 0.01215 0.07983
diabetes2.dt 0.16527 0.30469 0.21737 0.67425 0.19828 0.3895 0.01367 0.11502
diabetes3.dt 0.18448 0.41819 0.20633 0.83932 0.198245 0.66251 0.01087 0.15556

flare1.dt 0.005703 0.062674 0.016179 0.54143 0.0108045 0.133515 0.0036891 0.229216
flare2.dt 0.0056462 0.16394 0.020638 0.98454 0.011805 0.37028 0.005415 0.21594
flare3.dt 0.0053369 0.026865 0.02753 0.46098 0.0084095 0.109955 0.0020447 0.155731
gene1.dt 0.18045 0.41456 0.20947 0.88508 0.19545 0.53253 0.01401 0.1474
gene2.dt 0.18979 0.3747 0.2036 0.6935 0.195835 0.524 0.00521 0.19061
gene3.dt 0.19058 0.34268 0.20595 0.75987 0.19645 0.497715 0.00252 0.17077
glass1.dt 0.11972 0.19157 0.14874 0.46311 0.132515 0.238385 0.00752 0.12212
glass2.dt 0.10809 0.23801 0.12733 0.84386 0.12511 0.301195 0.01133 0.07357
glass3.dt 0.11795 0.2034 0.17965 0.87819 0.14706 0.258865 0.02862 0.06484
heart1.dt 0.15302 0.41203 0.22526 0.74825 0.181845 0.53748 0.03134 0.23655
heart2.dt 0.1523 0.38485 0.21261 0.65591 0.185235 0.49747 0.02996 0.15341
heart3.dt 0.15598 0.37108 0.23905 0.90487 0.168535 0.50877 0.02506 0.20577
hearta1.dt 0.056208 0.13339 0.070184 0.24692 0.0646245 0.16761 0.006988 0.04108
hearta2.dt 0.051309 0.098796 0.076079 0.39911 0.0693205 0.200595 0.007769 0.16152
hearta3.dt 0.055084 0.114 0.069958 0.46969 0.0634365 0.197465 0.005679 0.10284
heartac1.dt 0.031445 0.10223 0.063649 0.51566 0.0389205 0.188415 0.016048 0.19475
heartac2.dt 0.045563 0.082019 0.06511 0.58866 0.0495645 0.1745 0.009406 0.18235
heartac3.dt 0.04667 0.15808 0.067027 0.6123 0.059298 0.24164 0.006651 0.1806
heartc1.dt 0.12304 0.20614 0.17604 0.77626 0.146935 0.42904 0.01534 0.12475
heartc2.dt 0.071984 0.35677 0.1112 0.92351 0.089802 0.456765 0.021572 0.13859
heartc3.dt 0.11362 0.33779 0.17805 0.65972 0.13948 0.548595 0.02097 0.14376
horse1.dt 0.14101 0.26264 0.18416 0.83255 0.16911 0.518115 0.0157 0.32652
horse2.dt 0.16824 0.30989 0.22329 0.87997 0.19056 0.49199 0.00997 0.0975
horse3.dt 0.15502 0.31396 0.18005 1.0124 0.175855 0.518115 0.0087 0.37541

mushroom1.dt 0.061638 0.33491 0.15802 0.78199 0.10114 0.53672 0.027291 0.26189
mushroom2.dt 0.056216 0.30372 0.16077 0.94163 0.119145 0.424235 0.06512 0.33558
mushroom3.dt 0.054472 0.28636 0.16533 0.67162 0.0939695 0.37584 0.040659 0.22021
soybean1.dt 0.05722 0.11677 0.11323 0.69782 0.0717435 0.2241 0.016915 0.11761
soybean2.dt 0.053438 0.17224 0.1076 0.43332 0.075084 0.260965 0.018939 0.20382
soybean3.dt 0.056795 0.15397 0.10243 0.39233 0.077126 0.21368 0.027104 0.09003
thyroid1.dt 0.049363 0.050557 0.062949 0.23542 0.055273 0.11584 0.005913 0.056643
thyroid2.dt 0.052773 0.057781 0.073528 0.093758 0.055694 0.069546 0.012782 0.01445
thyroid3.dt 0.050842 0.057937 0.068085 0.16795 0.0580325 0.0833615 0.008325 0.033761

42 Chapter 5. Training ANNs using SADEGL

Table 5.2: Average CPU Run Time for SADEGEL-BP and BP
Dataset Average runtime SADEGL-BP Average runtime BP Dimensionality

building1.dt 100.59221 0.145316 93
building2.dt 97.9219 0.1265635 93
building3.dt 91.66719 0.1140645 93
cancer1.dt 105.96251 0.1187515 62
cancer2.dt 103.35 0.0875015 62
cancer3.dt 102.35626 0.093751 62
card1.dt 135.26407 0.114064 272
card2.dt 146.9922 0.0984385 272
card3.dt 118.28438 0.1015635 272

diabetes1.dt 90.90783 0.100001 57
diabetes2.dt 80.52503 0.098439 57
diabetes3.dt 93.12971 0.085939 57

flare1.dt 119.69689 0.096876 143
flare2.dt 110.48126 0.095314 143
flare3.dt 120.19846 0.0968755 143
gene1.dt 179.89533 0.151566 623
gene2.dt 183.14532 0.182816 623
gene3.dt 177.50782 0.157815 623
glass1.dt 107.0469 0.0890625 86
glass2.dt 121.06876 0.084376 86
glass3.dt 97.05626 0.075 86
heart1.dt 134.38438 0.0843755 192
heart2.dt 119.15315 0.095314 192
heart3.dt 126.19846 0.0875005 192
hearta1.dt 90.8469 0.090626 186
hearta2.dt 99.24532 0.0828135 186
hearta3.dt 104.17033 0.0812505 186
heartac1.dt 92.43907 0.076563 186
heartac2.dt 95.86095 0.089063 186
heartac3.dt 91.28125 0.085938 186
heartc1.dt 131.10157 0.0703125 192
heartc2.dt 129.44062 0.071875 192
heartc3.dt 136.68752 0.095313 192
horse1.dt 125.84688 0.092189 313
horse2.dt 126.3047 0.0875 313
horse3.dt 139.76721 0.090625 313

mushroom1.dt 243.9047 0.265627 642
mushroom2.dt 248.37188 0.210939 642
mushroom3.dt 273.78128 0.246877 642
soybean1.dt 200.94845 0.1640635 529
soybean2.dt 203.18907 0.137503 529
soybean3.dt 206.22971 0.170314 529
thyroid1.dt 144.94063 0.131253 128
thyroid2.dt 131.19845 0.14844 128
thyroid3.dt 130.64689 0.193752 128

5.7. Results: SADEGL-BP 43

complexity.

44 Chapter 5. Training ANNs using SADEGL

Table 5.3: SADEGL and SADEGL-BP comparison

Dataset Max improvement Least Improvement Average improvement
building1.dt 0.025615 0 0.0137795
building2.dt 0.028219 0 0.022082
building3.dt 0.025587 0 0.017681
cancer1.dt 0.021973 6.2E-05 0.0187755
cancer2.dt 0.017101 0 0.014988
cancer3.dt 0.016406 0 0.013564
card1.dt 0.018952 0 0.014075
card2.dt 0.019106 0 0.015304
card3.dt 0.020052 0 0.016846

diabetes1.dt 0.090763 0.001727 0.0656595
diabetes2.dt 0.090763 0 0.043549
diabetes3.dt 0.059282 0 0.037295

flare1.dt 0.063127 0 0.0520675
flare2.dt 0.079066 0.005375 0.050366
flare3.dt 0.050884 0.000636 0.045364
gene1.dt 0.071974 0 0.056869
gene2.dt 0.080109 0.006721 0.050516
gene3.dt 0.056672 0 0.04497
glass1.dt 0.22075 0 0.15961
glass2.dt 0.22075 0 0.149505
glass3.dt 0.22779 0 0.13799
heart1.dt 0.20785 0 0.14298
heart2.dt 0.20193 0.03206 0.159055
heart3.dt 0.1907 0 0.15798
hearta1.dt 0.22588 0 0.211885
hearta2.dt 0.25695 0 0.19683
hearta3.dt 0.23853 0 0.13818
heartac1.dt 0.20189 0 0.193275
heartac2.dt 0.2019 0 0.18974
heartac3.dt 0.22411 0 0.18902
heartc1.dt 0.27013 0.00026 0.186125
heartc2.dt 0.23882 0.01528 0.204045
heartc3.dt 0.2029 0 0.171255
horse1.dt 0.20074 0 0.18553
horse2.dt 0.20071 0 0.198245
horse3.dt 0.20633 0 0.18984

mushroom1.dt 0.017506 0.001102 0.00873225
mushroom2.dt 0.013416 0.001427 0.00893285
mushroom3.dt 0.014892 0.000974 0.00940155
soybean1.dt 0.020638 0 0.01586
soybean2.dt 0.014997 0 0.0082026
soybean3.dt 0.010549 0 0.0097877
thyroid1.dt 0.010129 0 0.00682465
thyroid2.dt 0.029505 0.0009719 0.00927395
thyroid3.dt 0.010911 0 0.00617525

Chapter 6

Designing a User Interface for the

SADEGL-BP algorithm

In this chapter an application is designed to act a user interface for training single layer MLPs

using the SADEGL-BP algorithm.

6.1 Design Requirements

The user interface needs to at minimum to allow a user to change the control parameters of the

SADEGL algorithm, and input their own data into the algorithm without directly interacting

with the script. The user interface also needs to return the best found weights/biases, and

the MSE of the network on the testing dataset, in a way which allows the user to easily save

and interact with the data. The user interface needs to allow a user to choose their own

training, validation and testing examples, however it would be also beneficial that they could

choose random splits. Additionally, the user interface needs to allow a user to choose their own

stopping tolerance and the duration of the stagnation period, aswell as the amount of neurons

in the hidden layer. The user should also be able to decide how many times they want to run

the algorithm.

45

46 Chapter 6. Designing a User Interface for the SADEGL-BP algorithm

The user interface would benefit from the automation/suggestion of various control parameters.

For instance, in this paper it is recommend to use K = NP
10

, hence when the population is up-

dated K could be updated to this value. In general the control parameters should default to the

values recommend in this paper. Additionally, after selecting data, data could be automatically

split into a sensible ratio such as 50/25/25 for training, validation and testing respectively.

Whilst not necessary for the sake of functionality, the user experience will greatly benefit from

the ability to pause/stop the algorithm from the user interface. Additionally, information being

returned in runtime will decrease the ”black box” feeling of running the script. Hence, a log

should be updated in real time, informing the user of the current state of the algorithm and

errors which occur during set-up. A symbol should be used to demonstrate the current state of

the algorithm - paused, error or running. A graph should plot the MSE of each run to inform

the user of how the algorithm is performing. Additionally, the best weights/biases and the

MSE should be returned to both the workspace and the user interface after each run.

6.2 Design Implementation

The user interface was implemented using Matlab’s App designer. The design view can be seen

in Figure 6.1. Panels are used to organize the user interface into 7 distinct sections; Dataset,

Control Parameters, Meta Settings, Run Algorithm , Best Positions Found, Log and Function

Errors.

The Dataset panel features numeric edit fields, which allow users to input integers greater than

1. The user interacts with these fields to specify the amount of input and output variables.

Users can select their dataset using the a button labelled ”Choose Dataset”, the name of the

selected file will show in the non-editable text field next to the button. A tab group is used to

toggle between using predetermined splits and random splits. If the user is using predetermined

splits they enter the how many instances should be used for training, validation and testing. If

the user is using random splits, they enter the percentage of data a split should use, hence this

numeric field accepts real numbers in range (0, 1].

6.2. Design Implementation 47

The Control Parameters panel features numeric edit fields. The population, Neighbourhood

and learning period fields only accept integers greater than 0. Additionally, the neighbourhood

radius size changes to NP
10

after the population size is updated. The probability fields accept

real numbers in range (0, 1]. Likewise, the Meta Setting panel features numeric fields, all of

which only accept integers except for the stop tolerance field which accepts all real numbers

greater or equal to 0.

The run algorithm panels features three buttons which allow the user to run, pause and stop the

algorithm. As well as an uneditable field which displays the current run count. The buttons in

this panel disable and re-enable themselves according to the current state of the user interface.

If a dataset has been selected the run button becomes enabled, and when pressed the user

interface checks for errors such as incorrect number of input and outputs. If there are no

errors, the algorithm begins running and the button is disabled. When the run button becomes

disabled, the pause button becomes enabled. The pause button stops the algorithm running at

the end of the current iteration. When pressed the button becomes highlighted to inform the

user their action has been recognized, and that the algorithm will pause momentarily. After

the algorithm has come to a stop, this button changes to a resume button and the stop button

becomes enabled. The resume button will resume the iteration progress, disable the stop button

and change back to the pause button. After the stop button is pressed, the stop button becomes

disabled, the resume button is switched back to the pause button, and the algorithm quickly

fine tunes the current best solution of the current run, and stops the algorithm. After the

algorithm has stopped, the run button becomes re-enabled.

The best positions found panel features a non editable table, in which the best weights and

biases are stored after each run is completed. This table is also stored to the workspace, so users

can easily manipulate the data. Similarly, the Function Errors panel features a non editable

table in which the functions errors are stored after each run. Additionally, the panel features a

graph which plots the the MSE for SADEGL and SADEGL-BP after each run.

The Log panel features a non editable text box. This textbox is cleared at the start of each

run. During a run any update made to the textbox starts on a new line. The textbox is used

48 Chapter 6. Designing a User Interface for the SADEGL-BP algorithm

to inform the user when a run has started, ended, been paused or is stopping. The textbox

also informs users of 3 detectable errors when a run is attempted with incorrect details. If the

number of input and output variables, is not the same, an error is returned informing the user

of this. However, it is not able to detect if the input/output split is actually correct. If the

user has selected predetermined splits and the total value of each numeric field is not equal to

the total number of instances, the user is informed. Similarly, if the user has selected random

splits and the sum of the numeric fields is not 1, the user is informed. Due to the restriction of

values in numeric fields, no other detectable errors can occur.

Additionally, the Log panel features a ’Lamp’ which is used to inform the user of the current

status of the application. If the algorithm is not running it is coloured grey, if an error occurs

after pressing run it flashes red, if is running it is coloured green, and if it is paused/stopping

it is coloured amber.

An image of the algorithm paused after multiple runs is shown in Figure 6.2. There are currently

no known bugs, and it is impossible for the application to begin running the algorithm without

detecting incorrect user input that would cause errors. This is due to the three mechanisms

which produce error messages, and the strict limitations on numeric fields.

Users should save their data as comma separated variables, with the rows being data instances

and columns being the inputs and output variables. Inputs variables must be stored in the left

most columns. If the user wishes to use predetermined splits training instances must be in the

top most rows, followed by the validation data and finally the testing data. The data should

be preprocessed in the same fashion as the PROBEN1 datasets.

6.2. Design Implementation 49

Figure 6.1: Design View of the User Interface for the SADEGL-BP algorithm

Figure 6.2: View of the Application in Use

Chapter 7

Project Management

7.1 Project Schedule

This project had 5 major tasks

1. Conduct background and literature review on DE, BP, and ANN training

2. Design and implement a DE algorithm, and benchmark it using a suitable test suite

3. Use the DE algorithm to train a ANN

4. Summarize the performance of the DE algorithm when used to train ANNs and optimize

objective functions

5. Design and implement a user interface for the application

The time required for each task would be significant, hence a work plan was formulated to allow

me to complete this project within the give time frame. The initial aim was to complete task

1 by may, so that I could use the knowledge gained to complete task 2 and 3 during June and

July. During august I planned to complete tasks 4 and 5.

All tasks were completed on time, but more time was given to some tasks than expected.

After completing task 1 the project became more focused on designing a high performing DE

50

7.2. Risk Management 51

algorithm which would be useful for training ANNs, rather than designing a high performing

ANN model trained using DE. Hence, significantly more time was spent on designing the

SADEGL algorithm than the neural network itself. However, this was not a case of time

mismanagement, the extra time investment was required to improve the designed DE algorithm.

Additionally, the application designed required relatively little time to develop due to its simple

design. However, given more time I would like to have implemented extra functionality such

as the ability to use alternative stopping conditions. Similarly, I would have designed an

application for general use of the SADEGL algorithm.

7.2 Risk Management

The main risk of the project was failing to complete the objectives by the deadline. Failure to

complete one task successfully, would prevent the next task from being completed successfully.

If my knowledge gained during task 1 was insufficient the performance of the developed DE

algorithm would be unsatisfactory, therefore preventing me from completing my other tasks.

To avoid this issue I dedicated a significant amount of time to researching DE and other EAs,

and how they have been used to train ANNs currently. I identified both the importance of

exploration and exploitation in EAs, and the research gap that currently existed - The lack

of self-adaptive DE algorithms which use global and local neighbourhood mutation operators.

Designing this algorithm based on current DE techniques ensured my algorithm would have

atleast competitive performance with other modern DE algorithms.

Running evolutionary algorithms takes a significant amount of time, hence identifying any

mistakes before the algorithm was benchmarked was crucial. If a mistake did occur after

benchmarking the algorithm and using it to train ANNs, both tasks would have to be repeated.

Rigorous and methodical checking of the Matlab implementation was used to prevent this.

Managing multiple similar scripts and results simultaneously can cause data to be mixed up.

Hence, good storage structure was essential. The ANN,DE algorithm, and user interface were

all stored separately. Additionally, results and scripts were frequently backed up onto a hard

52 Chapter 7. Project Management

drive and cloud storage systems since recreating them would be time consumed. Recreation

would be essential if an unknown bug was to be introduced to the scripts/user interface, or the

results of the algorithms became mixed.

7.3 Quality Management

Strict standards were adopted when benchmarking the SADEGL and SADEGL-BP algorithms.

The CEC’2013 standards were adopted to evaluate SADEGL, all rules were followed accurately

and results produced as described. Similarly, the PROBEN1 datasets were used to evaluate

the SADEGL-BP algorithms ability to train ANNs. Most importantly the random number

generation state for all runs of the algorithms are stored, and hence all results are reproducible

since only reproducible results are should be considered scientific.

7.4 Social, Legal, Ethical and Professional Considera-

tions

For this project there were no relevant Social, Legal, Ethical or Professional Considerations.

Note that the paper uses only datasets which are publicly available for use.

Chapter 8

Critical Appraisal

In this paper I have identified a promising research gap in the field of evolutionary optimization,

and designed an algorithm to fill it. The algorithm performed exceptionally well with results

comparing favourably to the 10th best algorithm presented in the CEC 2013 competition results

paper [10].

The algorithms mutation strategy was was inspired by a mutation operator which created donor

vectors for an individuals using both the best solution in the entire population, and the best

solution in a mathematical ring surrounding the individual. The algorithm I developed used the

concept of global and local searching for its mutation operators. It is unique compared to its

inspiration in that global and local searches are separate operators which are chosen adaptively

such that the algorithm chooses the most successful operator in recent iterations. This mutation

strategy was designed based on the knowledge I had gained regarding the importance of both

exploration and exploitation in evolutionary algorithms. Additionally, I implemented a ’current-

to-rand’ mutation operator to allow the algorithm to purely focus on exploration in a limited

search space, rather than exploiting the best solutions.

The algorithm designed also features an adaptive crossover scheme, which unlike most adaptive

crossover schemes in current research, is biased to extreme crossover rates that are close to 0

or 1. This decision was based on research which identified that less extreme values close to 0.5

neither progress consistently, or make large improvements when they do progress. Additionally,

53

54 Chapter 8. Critical Appraisal

unlike most adaptive crossover rate schemes, the algorithm uses the amount of improvement

made by trial vectors to determine how to adapt the system, rather than just the number of

times a crossover rate is successful.

I successfully trained ANNs using the developed DE algorithm and used BP to fine tune the

results. Hybridizing EAs with local search techniques has become standard in recent years.

The scope of this project was already ambitious, so other local search techniques were not

experimented with. Experimenting with other techniques could have lead to interesting results.

The hybrid evolutionary-gradient algorithm developed consistently outperformed BP when used

to train ANNs. However, the scope of the ANN training is limited to a single layer MLP. Its

performance and usefulness on more advanced neural network structure (such as deep neural

networks) is unknown.

The designed user interface for the algorithm is functional, however a more advanced application

would be beneficial. More control parameters could be made available for changing such as the

scale factor F , as well as a wider range of stopping conditions. Additionally, better pause

functionality should be incorporated by adding more regularly pause checks when running the

algorithm. Currently the algorithm has to finish the current iteration, before the application

pauses it. Other potential improvements to the application include methods to generate relevant

statistics in the application and the ability to save results without accessing the workplace.

Chapter 9

Student Reflections

During this project my time management was the only significant issue. I spent too much time

fine tuning the DE algorithm, instead of moving onto the next task. If I had spent less time fine

tuning the algorithm, the results of the ANN training would likely not have been significantly

worse, and I would have had additional time to either implement a user interface with more

functionality or test the algorithm on more complex ANN structures. Its also possible that the

project was too ambitious and its scope to large, a simple user manual could have replaced the

user interface.

55

Chapter 10

Conclusion

10.1 Summary of Thesis Achievements

The original aim of this project was to design and implement an optimised Differential Evolution

algorithm to train Artificial Neural Networks. This was to be achieved by completing the

following objectives

• Develop and implement a DE algorithm.

• Design an ANN as a surrogate model.

• Train the ANN using the DE algorithm.

• Produce a technical report of the DE algorithm and ANN which discusses the accuracy

of its predictions when compared to the original model.

However, after completing a background and literature review on evolutionary algorithms and

their applications to neural network. I discussed with my supervisor the new direction I wanted

to take the research project in, whilst the aim of the project remained the same, the objectives

changed to the following

• Develop and implement a DE algorithm.

56

10.1. Summary of Thesis Achievements 57

• Design and implement a method to train ANNs using the DE algorithm

• Benchmark the performance of the ANNs trained by the DE algorithm using various

datasets

• Evaluate the performance of the ANNs, comparing their performance to the same network

trained using BP

These objectives have been successfully achieved.

• A Self-adaptive DE algorithm which adjusts both its mutation and crossover rate strat-

egy according to the performance of its mutation and crossover operators was designed

and successfully implemented. The algorithm is competitive with state of the art algo-

rithms, with results favourably comparable to the 10th best algorithm in the CEC’2013

competition.

• A script was designed and implemented to map the weights and biases of a single layer

MLP of n neurons to the dimensions of the DE algorithm. The script uses provided

training data to improve the DE algorithms population, and provided validation data as

stopping criteria to avoid over fitting the algorithm to the training data.

• The ANN was benchmarked using the 45 PROBEN1 datasets.

• The performance of the networks was evaluated using both the designed DE algorithm

and BP. The designed algorithm consistently outperformed BP.

Additionally, an application was designed and implemented which allows users to train ANNs

using SADEGL-BP with their own data, with some flexibility in terms of control parameters,

stopping conditions and training/validation/testing splits.

To summarize this project has successfully produced the following deliverables

• A script for the SADEGL algorithm

58 Chapter 10. Conclusion

• A script that maps the structure of neural network to the SADEGL algorithm, and

hybridizes it with BP

• An application which functions as a user interface for the SADEGL-BP algorithm

The designed SADEGL algorthim can be used minimize any real objective function. And the

SADEGL-BP script or application can be used to train single layer neural networks with any

amount of neurons.

10.2 Future Work

Population Size NP is not normally used as an adaptive control parameter in evolutionary algo-

rithms. In SADEGL-BP the control parameter which determines the size of a local neighbour,

K, is dependent on population size. An adaptive system which either adjust the size of the

population or the size of local neighbourhoods K could further improve the exploration and

exploitation capabilities of the algorithm. Additionally, in this paper local neighbourhoods

are defined using mathematical rings. Other mathematical structures could be used to de-

fine alternative neighbourhoods for mutation operators. Alternatively, an adaptive algorithm

which shuffles the population in order to change the local neighbourhoods could improve the

algorithm. Additionally, Scale factor F is not adaptive in the SADEGL-BP algorithm. A self-

adaptive strategy similar to the one used for crossover rates could be implemented, so that the

algorithm decreases/increases the scale factor according to the success of scale factor values in

recent iterations.

In this paper SADEGL is only hybridized with BP due to time constraints. Further experi-

mentation should focus on hybridizing SADEGL with alternative local search methods. The

algorthim should also be used to train more advanced forms of ANNs with suitably challenging

datasets. Additionally, a method to optimize the amount of neurons a single layer MLP uses

whilst simultaneously training the weights and biases should be developed for SADEGL. A

simple method to do this would to be extend the dimensionality of a problem by 1, and this

10.2. Future Work 59

dimension would be a boolean value representing the amount of neurons the individual should

use. Whenever an individual is evaluated it should then be evaluating using only the specified

amount of neurons. A suitable mutation and crossover scheme for this dimension would need

to be designed.

The application which functions as a user interface should be developed further, so that it allows

for both more control of parameters and stopping criteria. Additional functionality should be

added to improve the applications of it, such as the ability to generate visual and statistical

representations of the results.

Bibliography

[1] Janez Brest, Sao Greiner, Borko Boskovic, Marjan Mernik, and Viljem Zumer. Self-

adapting control parameters in differential evolution: A comparative study on numeri-

cal benchmark problems. IEEE transactions on evolutionary computation, 10(6):646–657,

2006.

[2] Maurice Clerc. From theory to practice in particle swarm optimization. In Handbook of

Swarm Intelligence, pages 3–36. Springer, 2011.

[3] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Exploration and exploitation in evo-

lutionary algorithms: A survey. ACM Computing Surveys (CSUR), 45(3):35, 2013.

[4] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. Differential evolution: a survey

of the state-of-the-art. IEEE transactions on evolutionary computation, 15(1):4–31, 2011.

[5] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in

evolution strategies. Evolutionary computation, 9(2):159–195, 2001.

[6] John H Holland. Genetic algorithms and the optimal allocation of trials. SIAM Journal

on Computing, 2(2):88–105, 1973.

[7] Momin Jamil and Xin-She Yang. A literature survey of benchmark functions for global

optimisation problems. International Journal of Mathematical Modelling and Numerical

Optimisation, 4(2):150–194, 2013.

[8] Niklas Lavesson and Paul Davidsson. Quantifying the impact of learning algorithm pa-

rameter tuning. In AAAI, volume 6, pages 395–400, 2006.

60

BIBLIOGRAPHY 61

[9] JJ Liang, BY Qu, PN Suganthan, and Alfredo G Hernández-Dı́az. Problem definitions and

evaluation criteria for the cec 2013 special session on real-parameter optimization. Com-

putational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang

Technological University, Singapore, Technical Report, 201212:3–18, 2013.

[10] I Loshchilov, T Stuetzle, and T Liao. Ranking results of cec13 special session & competition

on real-parameter single objective optimization. In 2013 IEEE congress on evolutionary

computation, CEC, Cancun, Mexico, pages 20–23, 2013.

[11] Rammohan Mallipeddi, Ponnuthurai N Suganthan, Quan-Ke Pan, and Mehmet Fatih Tas-

getiren. Differential evolution algorithm with ensemble of parameters and mutation strate-

gies. Applied soft computing, 11(2):1679–1696, 2011.

[12] Silja Meyer-Nieberg and Hans-Georg Beyer. Self-adaptation in evolutionary algorithms.

In Parameter setting in evolutionary algorithms, pages 47–75. Springer, 2007.

[13] Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica,

8:143–195, 1999.

[14] Adam P Piotrowski. Differential evolution algorithms applied to neural network training

suffer from stagnation. Applied Soft Computing, 21:382–406, 2014.

[15] Adam P Piotrowski. Review of differential evolution population size. Swarm and Evolu-

tionary Computation, 32:1–24, 2017.

[16] Lutz Prechelt et al. Proben1: A set of neural network benchmark problems and bench-

marking rules. 1994.

[17] A Kai Qin and Ponnuthurai N Suganthan. Self-adaptive differential evolution algorithm

for numerical optimization. In Evolutionary Computation, 2005. The 2005 IEEE Congress

on, volume 2, pages 1785–1791. IEEE, 2005.

[18] Partha Pratim Sarangi, Abhimanyu Sahu, and Madhumita Panda. A hybrid differential

evolution and back-propagation algorithm for feedforward neural network training. Inter-

national Journal of Computer Applications, 84(14), 2013.

62 BIBLIOGRAPHY

[19] Josef Tvrd́ık and Radka Poláková. Competitive differential evolution applied to cec 2013

problems. In Evolutionary Computation (CEC), 2013 IEEE Congress on, pages 1651–1657.

IEEE, 2013.

[20] Lin Wang, Yi Zeng, and Tao Chen. Back propagation neural network with adaptive dif-

ferential evolution algorithm for time series forecasting. Expert Systems with Applications,

42(2):855–863, 2015.

[21] Daniela Zaharie. Influence of crossover on the behavior of differential evolution algorithms.

Applied soft computing, 9(3):1126–1138, 2009.

